For Scientists, by Scientists

Powered by industry-leading technologies developed at Mila, the world’s largest deep learning research institute

Pioneering few-shot learning for drug design

Novel methods built for low data environments are needed to unlock the full potential of deep learning in drug design.

Our expansive portfolio of technologies builds on our founding team’s pioneering work in few-shot learning for drug design, allowing us to learn accurate property predictors from datasets too small, sparse, or noisy for traditional methods.

Whether a novel target class with limited historical data, or low-throughput assays difficult to run at scale, few-shot learning unlocks new opportunities in AI-enabled drug design. 

Improving the generalization and expressivity of graph neural networks

Machine learning on graph-structured data is an essential component of modem drug design workflows.

Our team is working to improve the expressivity and generalization capacity of graph neural networks, ensuring consistent model performance across different classes of molecules and targets.

This extends to the dynamic, three-dimensional nature of molecules, ensuring best-in-class performance on bioactivity prediction, ADME-Tox profiling, and graph-based molecular generation.

Unifying molecular design with real-world chemistry constraints

Effective drug design requires tradeoffs between property optimization and real-world chemistry constraints.

We put synthesizability first, developing technologies for molecular design that use measures of synthetic feasibility as a means of more efficiently searching global design space.

Whether constrained optimization or de novo design, we combine reinforcement learning, generative modeling, and active learning strategies to identify molecules optimized for multiple objectives, while also enforcing a high degree of medicinal chemistry quality at every step. 

Focus Areas

Latest Research

Read More
Apr 7
2021
Journal

Directional Graph Networks

D. Beaini, S. Passaro, V. Letourneau, W. Hamilton, G. Corso, P. Lio

Published in 

arXiv

Read More
Dec 31
2020
Journal

Principal Neighbourhood Aggregation for Graph Nets

G. Corso, L. Cavalleri, D. Beaini, P. Lio, P. Velickovic

Published in 

NeurIPS

Read More
Dec 27
2020
Journal

Geodesics in Fibered Latent Spaces

T. Daouda, R. Chhaibi, P. Tossou, A. Villani

Published in 

arXiv

Read More
Dec 15
2020
Journal

Molecular Design in Synthetically Acessible Chemical Space

J. Horwood, E. Noutahi

Published in 

ACS

Read More
Dec 11
2020
Journal

Adaptive Deep Kernel Learning

P. Tossou, B. Dura, M. Marchand, F. Laviolette, A. Lacoste

Published in 

arXiv

Read More
Apr 2
2020
Journal

Interpretable Graph Representation Learning

E. Noutahi, D. Beaini, J. Horwood, P. Tossou

Published in 

arXiv

Interested in Collaborating?

We collaborate with leading researchers around the world and welcome the opportunity to discuss new projects with both academic and industry teams

Let's Talk

Get in Touch

* Name
* Subject
* Email Address
* Message
Company
Phone Number
Submit
Submit

Thank you for reaching out.
We will be in touch soon.

Oops! Something went wrong while submitting the form.